Impact des fertilisants synthétiques et organiques sur la communauté fongique des sols en Haïti
une révision de littérature
DOI:
https://doi.org/10.23899/relacult.v8i2.2602Palavras-chave:
Fungos micorrízicos, fertilizante orgânico, fertilizante sintético, micro-organismoResumo
Sendo um ambiente vivo, o solo constitui o habitat de uma multiplicidade de organismos vivos cujos papéis são de importância crucial para a agricultura. Entre esses organismos, os fungos despertam um interesse particular devido às suas atividades que favorecem o bom funcionamento do ecossistema edáfico. No entanto, ao longo das últimas cinco décadas, a aplicação de fertilizantes químicos resultou em consequências graves para as comunidades fúngicas. Neste trabalho, um conjunto de estudos científicos foi revisado para destacar os impactos da utilização de fertilizantes químicos e orgânicos nas comunidades fúngicas dos solos haitianos, com uma atenção especial aos fungos micorrízicos arbusculares. Os trabalhos consultados mostram que a estrutura, a biomassa, a abundância e a diversidade dos fungos são influenciadas pela qualidade e quantidade dos resíduos de fertilizantes químicos presentes no solo. No que diz respeito ao uso de fertilizantes orgânicos, a maioria dos estudos consultados mostra um impacto positivo direto desses tipos de fertilizantes nas comunidades fúngicas, assegurando tanto sua estabilidade quanto sua abundância. Assim, o objetivo deste trabalho é investigar os impactos de fertilizantes sintéticos e orgânicos nas comunidades de fungos dos solos no Haiti.
Métricas
Referências
ABBOTT L.K, JOHNSON N.C. (2017). Introduction : perspectives on mycorrhizas and soil fertility. In: Johnson NC, Gehring C, Jansa J, eds. Mycorrhizal mediation of soil: fertility, structure, and carbon storage. Amsterdam, the Netherlands: Elsevier Academic Press, 93–105.
ALEXOPOLOUS C.J., MIMS W. (2008). Introductory Mycology, Third, John Wiley., Chichester, UK. [2] M.P. Kirk, P.F. Cannon, D.W. Minter, J.A. Stalpers, Dictionary of the Fungi, tenth ed., CAB International, Wallingford.
AMEEN F., STEPHENSON S.L., AL NADHARI S., YASSIN M.A. (2020). A review of fungi associated with Arabian desert soils, Nova Hedwigia 1-2 173–195, https://doi. org/10.1127/nova.
BARDGETT R.D, VAN DER PUTTEN W.H. (2014). Belowground biodiversity and ecosystem functioning. Nature 515 : 505–511.
BEAUREGARD M. (2010). Impacts de la fertilisation phosphatée sur la biodiversité microbienne de sols agricoles. These de doctorat : Universite de Montreal.
CAMENZIND T., HEMPEL S., HOMEIER J., HORN S., VELESCU A., WILCKE W., RILLIG M.C. (2014). Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest. Global Change Biology, 20 (12), 3646-3659.
CHOWDHURY A., PRADHAN S., SAHA M., SANYAL N. (2008). Impact of pesticides on soil microbiological parameters and possible bioremediation strategies. Indian J. Microbiol. 48 (1), 114-27, DOI: 10.1007/s12088-008-0011-8.
CRAWFORD S.D. (2019). Lichens used in traditional medicine, in: B. Rankovie (Ed.), Lichen Secondary Metabolites: Bioactive Properties and Pharmaceutical Potential, Second, Springer International Publishing, Switzerland https://doi.org/10.1007/978-3-319-13374-4.
CRIPPS C.L., EVENSON V.S., KUO M. (2016). The Essential Guide to Rocky Mountain Mushrooms by Habitat, University of Illinois Press Urbana, Chicago, and Springfield.
DANIELA K., JAKUB E., FLORIEN N., LUKAS P., (2014). Effect of compost amendment on arbuscular mycorrhiza in relation tobioavailability of heavy metals in contaminated soils. MendelNet.Accessed on September 30 2023 on https://www.researchgate.net/publication/280736320
DELGADO-BAQUERIZO M., POWELL J.R, HAMONTS K., REITH F., MELE P., BROWN M.V., DENNIS P.G., FERRARI B.C., FITZGERALD A., YOUNG A. (2017). Circular linkages between soil biodiversity, fertility and plant productivity are limited to topsoil at the continental scale. New Phytologist 215: 1186–1196.
EGERTON-WARBURTON L.M, ALLEN E.B. (2000). Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecological Applications 10: 484-496.
Falkowski P.G., Fenchel T., Delong E.F. (2008). The microbial engines that drive Earth’s biogeochemical cycles. Science 320 : 1034-1039.
FAO, ITPS, GSBI, CBD, EC. (2020). State of Knowledge of Soil Biodiversity - Status, Challenges and Potentialities, Report 2020, FAO, Rome, 2020, https://doi.org/ 10.4060/cb1928en.
FENG B., YANG Z. (2018). Studies on diversity of higher fungi in Yunnan, southwestern China: a review, Plant Divers 40 1– 7, https://doi.org/10.1016/j. pld.2018.07.001.
GEISSELER D., SCOW K.M. (2014). Long-term effects of mineral fertilizers on soil microorganisms-a review. Soil Biol Biochem 75: 54-63
GRAU O., GEML J., PEREZ-HAASE A., NINOT J.M, SEMENOVA-NELSEN T.A, PENUELAS J. (2017). Abrupt changes in the composition and function of fungal communities along an environmental gradient in the high Arctic. Molecular Ecology 26: 4798-4810
HAGE-AHMED K., ROSNER K., STEINKELLNER S. (2019). Arbuscular mycorrhizal fungi and their response to pesticides. Pest Manage. Sci., 75 (3), 583-590.
HASSAN B, DANIEL M. (2001), Effets de la fertilisation phosphatée sur la mycorhization, la croissance et la nutrition en phosphore et en azote de semis de Cèdre (Cedrus atlantica Manetti) inoculés en pépinière par Tricholoma tridentinum Sing. var. cedretorum Bon. Annals of Forest Science, 58 (3), pp. 289-300. ff10.1051/forest : 2 001 127ff. ffhal-00883334
HAWKSWORTH D., LUCKING R. (2017). Fungal diversity revisited: 2.2 to 3.8 million species, Microbiol. Spectr. (5) 1-17, https://doi.org/10.1128/microbiolspec. FUNK-0052-2016.
HE D., XINGJIA X., JIN-SHENG H., CHAO W., GUANGMIN C., JONATHAN A., HAIYAN C. (2016) Composition of the soil fungal community is more sensitive to phosphorus than nitrogen addition in the alpine meadow on the Qinghai-Tibetan Plateau. Biol Fertil Soils 52:1059-1072. https://doi.org/10.1007/s00374-016-1142-4
HEILMANN-CLAUSEN J., BARRON E.S., BODDY L., DAHLBERG A., GRIFFITH G.W., NORD´EN J., OVASKAINEN O., PERINI C., SENN-IRLET B., HALME P., A fungal perspective on conservation biology, Conserv. Biol. 29 (2014) 61–68, https://doi.org/10.1111/cobi.12388.
JEFFREY S., GARDI C., JONES A., MONTANARELLA L., MARMO L., MIKO L., RITZ K., PERES G., ROMBKE J., VAN DER PUTTEN W.H. (2010). European Atlas of Soil Biodiversity. European Commission. Publications Office of the European Union, Luxembourg.
JOHN D. (2016). Fungi in Ecosystem Processes, Fungi in Ecosystem Processes, second ed., https://doi.org/10.1201/b19652-1, i–xxvi.
JOHNSON N.C, ROWLAND D.L. CORKIDI L., EGERTONWARBURTON L.M., ALLEN E.B. (2003) Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology, 84 (7), 1895-1908.
UDITH R., FELIX E., WETTSTEIN A. R., CHANTAL H., SAMIRAN B., LUCIE B., RAPHAËL C., DANIEL W., FABRICE M., THOMAS D.B., FLORIAN W., AND MARCEL G., VAN DER HEIJDEN A. (2021). Widespread Occurrence of Pesticides in Organically Managed Agricultural Soils – the Ghost of a Conventional Agricultural Past. Environ. Sci. Technol. DOI : https://pubs.acs.org/doi/10.1021/acs.est.0c06405
KYASCHENKO J., CLEMMENSEN K.E, KARLTUN E., LINDAHL B.D. (2017). Below-ground organic matter accumulation along a boreal forest fertility gradient relates to guild interaction within fungal communities, Ecology Letters 20: 1546-1555.
LIN X., YOUZHI F., HUAYONG Z., RUIRUI C., JUNHUA W., JIABAO Z., HAIYAN C., (2012). Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in north China revealed by 454 pyrosequencing. Environ Sci Technol 46 : 5764-5771. https://doi.org/10.1021/es3001695
LIU M, LIU J, CHEN X., JIANG C., WU M., LI Z. (2018). Shifts in bacterial and fungal diversity in a paddy soil faced with phosphorus surplus. Biol Fer-il Soils 54 : 259-267. https://doi.org/10.1007/s00374-017-1258-1
LIZA T., (2023). Labour, engrais minéraux et coupes rases détruisent les symbioses vitales entre champignons du sol et plantes, Accessed on September 9 2023 on https://urlz.fr/nwnl
Long-Jun D., Jian-Qiang S., Guo-Xin S., Jin-Shui W., Wen-Xue W. (2018). Increased microbial functional diversity under long-term organic and integrated fertilization in a paddy soil. Appl Microbiol Biotechnol 102(4):1969-1982. https://doi.org/10.1007/s00253-017-8704-8
LUCIAN C.D., PAOLA G., CRISTIAN O., AURELIA O. (2022). Fertilization and Soil Microbial Community: a review. Applied sciences, 12, 1198. https://doi.org/10.3390/app12031198
LUPWAYI N.Z., MONREAL M.A., CLAYTON G.W., GRANT C.A., JOHNSTON A.M., RICE W.A. (2001). Soil microbial and diversity respond to tillage and sulfur fertilisers. Canadian Journal of Soil Science, 81:577-589.
MA M., JIANG X., WANG Q., ONGENA M., WEI D., DING J., GUAN D., CAO F., ZHAO B., LI J. (2018). Responses of fungal community composition to long-term chemical and organic fertilization strategies in Chinese Mollisols. Microbiologyopen 7:e00597. https://doi.org/10.1002/mbo3.597
MADER P., EDENHOFER S., BOLLER T., WIEMKEN A., NIGGLI U. (2000). Arbuscular mycorrhizae in a long-term field trial comparing low-input (organic, biological) and high-input (conventional) farming systems in a crop rotation. Biol. Fertil. Soils, 31 (2), 150-156.
MARX J. (2004). The roots of plant-microbe collaborations. Science 304 : 234-236
MCMULLAN-FISHER S.J.M., MAY T.W., ROBINSON R.M., BELL, T.L., LEBEL T., CATCHESIDE P. (2011). York A., Fungi and fire in Australian ecosystems: a review of current knowledge, management implications and future directions, Aust. J. Bot. 59 70– 90, https://doi.org/10.1071/bt10059.
Millennium Ecosystem Assessment (MEA). (2005). Ecosystems and Human Wellbeing, Island Press, Washington, DC.
MOHAMED D.J, MARTINY J.B. (2011). Patterns of fungal diversity and composition along a salinity gradient. ISME Journal 5 : 379-388.
PAUL B., GERMAINE B., Action in vitro d’un herbicide (molinate) sur trois champignons parasites du riz : Sclerotium oryzae Catt., S. hydrophilum Sacc. et Rhizoctonia oryzae Ryker et Gooch. Agronomie, 1982, 2 (3), pp.301-304. ffhal-00884385ff
PEREZ-MORENO J., GUERIN-LAGUETTE A., RINALDI A.C., YU F., VERBEKEN A., HERNANDEZ-SANTIAGO F., MARTÍNEZ-REYES M., Edible mycorrhizal fungi of the world: what is their role in forest sustainability, food security, biocultural conservation and climate change? Plants People Planet 3 (2021) 471-490, https://doi.org/ 10.1002/ppp3.10199.
PRINGLE A., BARRON E., SARTOR K., WARES J., (2011). Fungi and the Anthropocene: biodiversity discovery in an epoch of loss, Fungal Ecol 4 121–123, https://doi. org/10.1016/j.funeco.2011.01.001.
READ D.J, PEREZ-MORENO J. (2003). Mycorrhizas and nutrient cycling in ecosystems-a journey towards relevance? New Phytologist 157: 475–492.
RICHARD B., SHAMSUL B., SUSANNE S., SCOTT B. (2017). Soil biological health what is it and how can we improve it? Proc Aust Soc Sugar Cane Technol Vol 39 2017.
RICHARDSON D.H.S. LICHENS AND MAN, IN: HAWKSWORTH D.H.S (ED.), Frontiers in Mycology, 4th International Mycological Congress, Regensburg, Germany, (1990), C.A.B. International, Wallingford, United Kingdom, 1991, pp. 187–210.
RITZ K., WHATREY R.E., GRIFFITHS B.S. (1997). Effect of animal manure application and crop plants upon size and activity of soil microbial biomass under organically growm spring barley. Biology and fertility of soils, 25:372-377.
ROUSK J., BAATH E., BROOKES P.C., LAUBER C.L., LOZUPONE C, CAPORASO JG, KNIGHT R, FIERER N. 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal 4 : 1340-1351
SAINT_FLEUR, W. (2020). Évaluation des phénomènes climatiques (cyclones ou ouragans) ayant frappé Haïti de 1816 à 2020, les dégradations et les vulnérabilités qui en résultent. Rapport Décideur, Université Laval. Canada.
ȘANDOR M. S., (2017). Biologia Solului. Note de Curs. Editura AcademicPres, Cluj-Napoca.
SANTOS JUNIOR, PAULO SÉRGIO DOS ; COGO, FRANCIANE DINIZ; COGO, FLÁVIA APARECIDA DINIZ; SOUSA, LUCÍOLA LUCENA. Fungos micorrízicos arbusculares: abordagem no ensino de Biologia / Arbuscular mycorrhizal fungi: approach in the teaching of Biology / Hongos micorrícicos arbusculares: enfoque en la enseñanza de la Biología. Revista, v. 12, n. 23, 2019.
SICILIANO S.D., PALMER A.S, WINSLEY T., LAMB E., BISSETT A., BROWN M.V, VAN DORST J., JI M.K, FERRARI B.C, GROGAN P. (2014). Soil fertility is associated with fungal and bacterial richness, whereas pH is associated with community composition in polar soil microbial communities. Soil Biology and Biochemistry 78: 10-20.
SIKES B.A, COTTENIE K., KLIRONOMOS J.N. (2009). Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas. Journal of Ecology 97: 1274–1280.
SLUSARCZYK J., CZERWIK-MARCINKOWSKA J. (2021). Fungi and algae as sources of medicinal and other biologically active compounds: a review, Nutrients 13 3178, https://doi.org/10.3390/nu13093178
SMITH S.E., READ D.J. (2010). Mycorrhizal symbiosis. Academic press. Accessed on September 30 2023 on https://urlr.me/sp1G2
TEDERSOO L, BAHRAM M, POLME S, KOLJALG U, YOROU NS, WIJESUNDERA R, VILLARREAL RUIZ L, VASCO-PALACIOS AM, THU PQ, SUIJA A. (2014). Global diversity and geography of soil fungi. Science 346 : 1 256 688.
TEDERSOO L., BAHRAM M., POLME S., KOLJALG U., YOROU N.S, WIJESUNDERA R., VILLARREAL R.L, VASCO-PALACIOS A.M, THU P.Q, SUIJA A. (2014). Global diversity and geography of soil fungi. Science 346 : 1 256 688.
TIINA T., LIINA T., MERILI T., LIINA E., ELINA K., BIRGIT K., VIACHESLAV E, ANNE L., EVELIN L., GUNNAR G. (2022). Composition of the microbial community in long-termorganic and conventional farming systems. Zemdirbyste-Agriculture, vol. 109, No. 2, p. 99-106DOI 10.13080/z-a.2022.109.013
UPRETI D.K., BAJPAI R., NAYAKA S., LICHENOLOGY: CURRENT RESEARCH IN INDIA, IN: B. BAHADUR, M. VENKAT RAJAM, L. SAHIJRAM, K. K V (EDS.), Plant Biology and Biotechnology: Volume I : Plant Diversity, Organization, Function and Improvement, Springer India, 2015, pp. 263–280, https://doi.org/10.1007/978-81-322- 2286-6
VAN A.I.M., OLSSON P.A., SÖDERSTRÖM B. (2002). Arbuscular mycorrhizal fungi respond to the substrate pH of their extraradical mycelium by altered growth and root colonization. New Phytol, 155 (1), 173-182.
VAN DER HEIJDEN M.G. ; DE BRUIN S., LUCKERHOFF L., VAN LOGTESTIJN R.S., SCHLAEPPI K.A. (2016). Widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment. ISME J, 10 (2), 389-399.
VAN DER HEIJDEN M.G.A, BARDGETT R.D, VAN STRAALEN N.M. (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters 11: 296-310.
VAN DER HEIJDEN M.G.A., EDLINGER A., RIEDO J., WALDER F., BUCHELI T.D. (2022). Un champignon pour de bonnes récoltes, Nature Ecology & Evolution 6, 1145–1154.
VANDENKOORNHUYSE P., QUAISER A., DUHAMEL M., LE VAN A., DUFRESNE A. (2015). The importance of the microbiome of the plant holobiont. New Phytologist 206: 1196–1206.
WAGG C., SCHLAEPPI K., BANERJEE S., KURAMAE E.E., VAN DER HEIJDEN M.G. (2019). Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat. Commun, 10 (1), 1– 10, DOI: 10.1038/s41467-019-12798-y
WANG F.Y., LIN X.G., HU J.L., QIN S.W, WANG, J. H. (2003). Arbuscular mycorrhizal fungal community structure and diversity in response to long-term fertilization: A field case from China. World J. Microbiol. Biotechnol. 2011, 27 (1), 67-74.
YANG M., DEVKOTA S., WANG L., SCHEIDEGGER C. (2021). Ethnolichenology - the use of lichens in the Himalayas and southwestern parts of China, Diversity (Basel) 13 (2021) 330, https://doi.org/10.3390/d13070330.
ZANNE A., ABARENKOV K., AFKHAMI M., AGUILAR C.T., BATES S., BHATNAGAR J., BUSBY P., CHRISTIAN N., CORNWELL W., CROWTHER T., FLORES-MORENO H., FLOUDAS D., GAZIS R., HIBBETT D., KENNEDY P., LINDNER D., MAYNARD D., MILO A., NILSSON R.H, TRESEDER K. (2019). Fungal functional ecology: bringing a trait-based approach to plant-associated fungi, Biol. Rev. 95 https://doi.org/10.1111/brv.12570.
ZEDDA L., RAMBOLD G. (2015). THE DIVERSITY OF LICHENISED FUNGI: ECOSYSTEM FUNCTIONS AND ECOSYSTEM SERVICES, IN: D.K. ET AL UPRETI (ED.), Recent Advances in Lichenology: Modern Methods and Approaches in Lichen Systematics and Culture Techniques, Vol. 2, 2015, pp. 121–145, https://doi.org/10.1007/978-81- 322-2235-47.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Renan Previl, Samuel Delphin, Johnny Jean, Cameau Cadostin, Althene Jean-Louis, Bamel Sydne

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
a) Os autores mantêm os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Creative Commons Attribution License BY-NC (https://creativecommons.org/licenses/by-nc/4.0/) que permite o compartilhamento do trabalho com reconhecimento da sua autoria e publicação inicial nesta revista.
b) Esta revista proporciona acesso público a todo o seu conteúdo, uma vez que isso permite uma maior visibilidade e alcance dos trabalhos publicados. Para maiores informações sobre esta abordagem, visite Public Knowledge Project, projeto que desenvolveu este sistema para melhorar a qualidade acadêmica e pública da pesquisa, distribuindo o OJS assim como outros softwares de apoio ao sistema de publicação de acesso público a fontes acadêmicas. Os nomes e endereços de e-mail neste site serão usados exclusivamente para os propósitos da revista, não estando disponíveis para outros fins.